Predy v2 Doc
  • Welcome
  • Predy finance v2
    • Quick Start
    • pVaults
    • Lite Mode
    • Pro Mode
    • Liquidation
    • Trade PnL / pVault Value Chart
  • Product
    • ETH-Perpetual
    • (ETH)²-Perpetual
    • Δ DELTA
    • Γ GAMMA
    • UniV3 LP Hedge
    • Crab Strategy
  • Project
  • Roadmap
  • Governance
  • Audits
  • Contracts version 2.0.1
  • Contracts version 2.0.2
  • FAQ
  • Reference
    • Margin Trading
    • Perpetual Contracts
    • Funding Rate, what is β?
    • The Greeks
    • Testnet Setup
    • Layer Two (Arbitrum)
    • Delta Neutral
  • Developer
    • Subgraph
      • Entities
      • Queries
  • Links
    • Predy finance v2 App
    • Medium
    • Twitter
    • Discord
    • Github
Powered by GitBook
On this page
  • Overview
  • How to Use the Strategy
  • Technical Details
  1. Product

(ETH)²-Perpetual

PreviousETH-PerpetualNextΔ DELTA

Last updated 2 years ago

Overview

The (ETH)² Perpetual is a power perpetual, described by the Paradigm team in their . The delta of the (ETH)² Perpetual is constant, meaning that as the underlying price increases, the contract increases at a faster rate, and as the underlying price decreases, the contract decreases at a slower rate. The downside of the (ETH)² Perpetual is the higher funding rate compared to the standard ETH Perpetual.

How to Use the Strategy

Long

The (ETH)² Perpetual can be longed anytime you're bullish on the ETH price. The funding rate needs to be taken into consideration with the positioning.

Short

The (ETH)² Perpetual can be shorted anytime you're bearish on the ETH price. The funding rate needs to be taken into consideration with the positioning.

Technical Details

Symbol=ETH2−PERP−USDCUnderlyingAsset=ETHIndexprice=S2∗110,000,(S=ETHprice from Chainlink)Δ Delta=δVδS≈δS2δS∗110,000=2S∗110,000Γ Gamma=δ2VδS2≈δ2S2δS2∗110,000=2∗110,000=Constantwhere, V=Indexprice , Tradeprice should be used by strict definitionTradeprice=Indexprice∗(1+FundingRate+TradingFeeRate)TradingFeeRate=0.1%VarienceETH=(VolatilityETH)2=σt2=λ∗σt−12+(1−λ)ut−12ut=lnStSt−1≈1−StSt−1λ=0.94(The RiskMetrics database produced by JP Morgan)FundingRate=σt2∗(1+β∗f(Tradeamount,AMMliquidityStatus))β=5.5 (Deployed param=3.5)β=3.0 on Version 2.0.2\begin{align*} &Symbol = ETH2-PERP-USDC &\\ \\ &Underlying Asset = ETH &\\ &Index_{price} ={S^2} * \frac{1}{10,000}, (S = ETH_{price} \ from \ Chainlink) &\\ \\ &\Delta \ Delta =\frac {\delta {V}}{\delta S} \approx \frac {\delta {S^2}}{\delta S} * \frac{1}{10,000} = 2S * \frac{1}{10,000} &\\ &\Gamma \ Gamma =\frac {\delta^2 {V}}{{\delta} S^2} \approx \frac {\delta^2 {S^2}}{{\delta} S^2} * \frac{1}{10,000} = 2 * \frac{1}{10,000} = Constant &\\ \\ &where, \ V = Index_{price} \ , \ Trade_{price} \ should \ be \ used \ by \ strict \ definition &\\ \\ &Trade_{price} =Index_{price} * (1+FundingRate+TradingFeeRate) &\\ &TradingFeeRate = 0.1 \% & \\ \\ &Varience_{ETH} = (Volatility_{ETH})^2 = \sigma_t^2 = \lambda * \sigma_{t-1}^2+(1-\lambda)u_{t-1}^2&\\ &u_{t} = ln\frac{S_t}{S_{t-1}}\approx1- \frac{S_t}{S_{t-1}}&\\ &\lambda = 0.94 (The \ RiskMetrics\ database\ produced \ by \ JP \ Morgan)&\\ \\ &FundingRate =\sigma_t^2*(1+\beta*f( Trade_{amount},AMM_{liquidityStatus})) &\\ &\beta = 5.5 \ (Deployed \ param = 3.5) & \\ &\beta = 3.0 \ on \ Version \ 2.0.2 & \\ \end{align*}​Symbol=ETH2−PERP−USDCUnderlyingAsset=ETHIndexprice​=S2∗10,0001​,(S=ETHprice​ from Chainlink)Δ Delta=δSδV​≈δSδS2​∗10,0001​=2S∗10,0001​Γ Gamma=δS2δ2V​≈δS2δ2S2​∗10,0001​=2∗10,0001​=Constantwhere, V=Indexprice​ , Tradeprice​ should be used by strict definitionTradeprice​=Indexprice​∗(1+FundingRate+TradingFeeRate)TradingFeeRate=0.1%VarienceETH​=(VolatilityETH​)2=σt2​=λ∗σt−12​+(1−λ)ut−12​ut​=lnSt−1​St​​≈1−St−1​St​​λ=0.94(The RiskMetrics database produced by JP Morgan)FundingRate=σt2​∗(1+β∗f(Tradeamount​,AMMliquidityStatus​))β=5.5 (Deployed param=3.5)β=3.0 on Version 2.0.2​​
f(Tradeamount,AMMliquidityStatus)=∫LL+ΔL∫mm+Δm(xy)3dxdyΔLΔm=m3+32m2Δm+mΔm2+Δm34L∗L∗(L+ΔL)2∗(L+ΔL2)≈(mL)3=(UtilizationRateAMM)3m=LiquidityLocked before The TradeΔm=LiquidityLocked for The TradeL=Liquiditytotal before The TradeΔL=Liquiditychanged for The Trade(xy)3 => k∗(xy)+(1−k)∗(xy)3where,k=0.3, 0<k<1 on Version 2.0.2\begin{align*} f( Trade_{amount},AMM_{liquidityStatus}) &= \frac{\int_L^{L+\Delta L}\int_m^{m+\Delta m}(\frac{x}{y})^3dxdy}{\Delta L \Delta m} &\\ &=\frac{m^3+\frac{3}{2}m^2\Delta m + m\Delta m^2+\frac{\Delta m^3}{4}}{L*L*(L+\Delta L)^2}*(L+\frac{\Delta L}{2}) &\\ &\approx ( \frac{m}{L} )^3 = (UtilizationRate_{AMM})^3&\\ \\ &m = Liquidity_{Locked} \ before \ The \ Trade &\\ &\Delta m = Liquidity_{Locked} \ for \ The \ Trade &\\ &L = Liquidity_{total} \ before \ The \ Trade &\\ &\Delta L = Liquidity_{changed} \ for \ The \ Trade&\\ \\ &(\frac{x}{y})^3 \ => \ k*(\frac{x}{y}) + (1-k)*(\frac{x}{y})^3&\\ &where, k=0.3, \ 0<k<1 \ on \ Version \ 2.0.2 & \\ \end{align*}f(Tradeamount​,AMMliquidityStatus​)​=ΔLΔm∫LL+ΔL​∫mm+Δm​(yx​)3dxdy​=L∗L∗(L+ΔL)2m3+23​m2Δm+mΔm2+4Δm3​​∗(L+2ΔL​)≈(Lm​)3=(UtilizationRateAMM​)3m=LiquidityLocked​ before The TradeΔm=LiquidityLocked​ for The TradeL=Liquiditytotal​ before The TradeΔL=Liquiditychanged​ for The Trade(yx​)3 => k∗(yx​)+(1−k)∗(yx​)3where,k=0.3, 0<k<1 on Version 2.0.2​​
2021 paper